Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Small ; : e2300947, 2023 Apr 14.
Article in English | MEDLINE | ID: covidwho-2300770

ABSTRACT

Rapid detection of whole virus particles in biological or environmental samples represents an unmet need for the containment of infectious diseases. Here, an optical device enabling the enumeration of single virion particles binding on antibody or aptamers immobilized on a surface with anti-reflective coating is described. In this regime, nanoparticles adhering to the sensor surface provide localized contributions to the reflected field that become detectable because of their mixing with the interfering waves in the reflection direction. Thus, these settings are exploited to realize a scan-free, label-free, micro-array-type digital assay on a disposable cartridge, in which the virion counting takes place in wide field-of-view imaging. With this approach we could quantify, by enumeration, different variants of SARS-CoV-2 virions interacting with antibodies and aptamers immobilized on different spots. For all tested variants, the aptamers showed larger affinity but lower specificity relative to the antibodies. It is found that the combination of different probes on the same surface enables increasing specificity of detection and dynamic range.

2.
ACS Nano ; 17(8): 7250-7256, 2023 04 25.
Article in English | MEDLINE | ID: covidwho-2305453

ABSTRACT

Conventional nucleic acid detection technologies usually rely on amplification to improve sensitivity, which has drawbacks, such as amplification bias, complicated operation, high requirements for complex instruments, and aerosol pollution. To address these concerns, we developed an integrated assay for the enrichment and single molecule digital detection of nucleic acid based on a CRISPR/Cas13a and microwell array. In our design, magnetic beads capture and concentrate the target from a large volume of sample, which is 100 times larger than reported earlier. The target-induced CRISPR/Cas13a cutting reaction was then dispersed and limited to a million individual femtoliter-sized microwells, thereby enhancing the local signal intensity to achieve single-molecule detection. The limit of this assay for amplification-free detection of SARS-CoV-2 is 2 aM. The implementation of this study will establish a "sample-in-answer-out" single-RNA detection technology without amplification and improve the sensitivity and specificity while shortening the detection time. This research has broad prospects in clinical application.


Subject(s)
COVID-19 , Nucleic Acids , Humans , RNA , CRISPR-Cas Systems , SARS-CoV-2 , RNA, Viral , Nucleic Acid Amplification Techniques
3.
Nano Lett ; 23(7): 2636-2643, 2023 04 12.
Article in English | MEDLINE | ID: covidwho-2254626

ABSTRACT

Biomolecular interactions compose a fundamental element of all life forms and are the biological basis of many biomedical assays. However, current methods for detecting biomolecular interactions have limitations in sensitivity and specificity. Here, using nitrogen-vacancy centers in diamond as quantum sensors, we demonstrate digital magnetic detection of biomolecular interactions with single magnetic nanoparticles (MNPs). We first developed a single-particle magnetic imaging (SiPMI) method on 100 nm-sized MNPs with negligible magnetic background, high signal stability, and accurate quantification. The single-particle method was performed on biotin-streptavidin interactions and DNA-DNA interactions in which a single-base mismatch was specifically differentiated. Subsequently, SARS-CoV-2-related antibodies and nucleic acids were examined by a digital immunomagnetic assay derived from SiPMI. In addition, a magnetic separation process improved the detection sensitivity and dynamic range by more than 3 orders of magnitude and also the specificity. This digital magnetic platform is applicable to extensive biomolecular interaction studies and ultrasensitive biomedical assays.


Subject(s)
COVID-19 , Nanoparticles , Humans , SARS-CoV-2 , DNA , Magnetic Phenomena
4.
Biosens Bioelectron ; 217: 114710, 2022 Dec 01.
Article in English | MEDLINE | ID: covidwho-2031160

ABSTRACT

COVID-19 is still unfolding, while many people have been vaccinated. In comparison to nucleic acid testing (NAT), antibody-based immunoassays are faster and more convenient. However, its application has been hampered by its lower sensitivity and the existing fact that by traditional immunoassays, the measurable seroconversion time of pathogen-specific antibodies, such as IgM or IgG, lags far behind that of nucleic acids. Herein, by combining the single molecule array platform (Simoa), RBD, and a previously identified SARS-CoV-2 S2 protein derivatized 12-aa peptide (S2-78), we developed and optimized an ultrasensitive assay (UIM-COVID-19 assay). Sera collected from three sources were tested, i.e., convalescents, inactivated virus vaccine-immunized donors and wild-type authentic SARS-CoV-2-infected rhesus monkeys. The sensitivities of UIM-COVID-19 assays are 100-10,000 times higher than those of conventional flow cytometry, which is a relatively sensitive detection method at present. For the established UIM-COVID-19 assay using RBD as a probe, the IgG and IgM seroconversion times after vaccination were 7.5 and 8.6 days vs. 21.4 and 24 days for the flow cytometry assay, respectively. In addition, using S2-78 as a probe, the UIM-COVID-19 assay could differentiate COVID-19 patients (convalescents) from healthy people and patients with other diseases, with AUCs ranging from 0.85-0.95. In summary, the UIM-COVID-19 we developed here is a promising ultrasensitive biodetection strategy that has the potential to be applied for both immunological studies and diagnostics.


Subject(s)
Biosensing Techniques , COVID-19 , Nucleic Acids , Vaccines , Antibodies, Viral , Antibody Formation , COVID-19/diagnosis , Humans , Immunoglobulin G , Immunoglobulin M , SARS-CoV-2 , Sensitivity and Specificity , Seroconversion
5.
Talanta ; 236: 122847, 2022 Jan 01.
Article in English | MEDLINE | ID: covidwho-1401881

ABSTRACT

Nucleocapsid protein (N protein) is the most abundant protein in SARS-CoV2 and is highly conserved, and there are no homologous proteins in the human body, making it an ideal biomarker for the early diagnosis of SARS-CoV2. However, early detection of clinical specimens for SARS-CoV2 remains a challenge due to false-negative results with viral RNA and host antibodies based testing. In this manuscript, a microfluidic chip with femtoliter-sized wells was fabricated for the sensitive digital detection of N protein. Briefly, ß-galactosidase (ß-Gal)-linked antibody/N protein/aptamer immunocomplexes were formed on magnetic beads (MBs). Afterwards, the MBs and ß-Gal substrate fluorescein-di-ß-d-galactopyranoside (FDG) were injected into the chip together. Each well of the chip would only hold one MB as confined by the diameter of the wells. The MBs in the wells were sealed by fluorocarbon oil, which confines the fluorescent (FL) product generated from the reaction between ß-Gal and FDG in the individual femtoliter-sized well and creates a locally high concentration of the FL product. The FL images of the wells were acquired using a conventional inverted FL microscope. The number of FL wells with MBs (FL wells number) and the number of wells with MBs (MBs wells number) were counted, respectively. The percentage of FL wells was calculated by dividing (FL wells number) by (MBs wells number). The higher the percentage of FL wells, the higher the N protein concentration. The detection limit of this digital method for N protein was 33.28 pg/mL, which was 300 times lower than traditional double-antibody sandwich based enzyme-linked immunosorbent assay (ELISA).


Subject(s)
Immunoassay/methods , Nucleocapsid Proteins , SARS-CoV-2 , Antibodies , COVID-19/diagnosis , Humans , Nucleocapsid Proteins/isolation & purification , RNA, Viral
SELECTION OF CITATIONS
SEARCH DETAIL